RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)		
	FIRST YEAR [2016-19] B.A./B.Sc. FIRST SEMESTER (July – December) 2016 Mid-Semester Examination, September 2016	
	e : 15/09/2016 MATHEMATICS GENERAL FOR IND. CHEMISTRY	
Time	e : 12 noon – 1 pm Paper : I	Full Marks : 25
<u>Group – A</u>		
	(Answer <u>any three</u> questions)	[3×5]
1.	State De Moiver's theorem. Use it to solve the equation : $x^3 + 8 = 0$.	[2+3]
2.	a) Show that the roots of the equation $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = \frac{1}{x} (a > b > c > 0$ are all real.	[3]
	b) Find the quotient and remainder when $x^4 + 3x^3 + 2x^2 - 6$ is divided by $2x - 1$.	[2]
3.	Investigate the consistency of the system	
	x + y + z = 4 $2x - y + 3z = 1$	
	2x - y + 3z - 1 $3x + 2y - z = 1$	
	and if consistence then solve it.	[5]
4.	If ω be a cube root of unity, then prove that $(a + b\omega + c\omega^2)$ is a factor of the determinant	
	a b c	
	bcacab	[5]
5.	Solve the following system of linear equations by Cramer's rule $x + 2y + z = 4$	

x - y + z = 5. [5] 2x + 3y - z = 1

<u>Group – B</u>

(Answer <u>any two</u> questions) [2×5]

6. If $\begin{array}{l} A = \{x : x \in \mathbb{R} \text{ and } 1 \le x \le 3\} \\ B = \{x : x \in \mathbb{R} \text{ and } 2 \le x \le 6\} \end{array}$ Find $A \cup B$, $A \cap B$, A - B and $A \Delta B$. [5]

7. State the De Morgan's law. Verify any one of them for the set $A = \{1, 5, 6\}, B = \{5, 6, 7\}$ and $U = \{1, 2, 3, 4, 5, 6, 7\}$. [2+3]

- 8. a) If $A \cup B = A \cup C$ and $A \cap B = A \cap C$, prove that B = C. [2]
 - b) Verify that $A (B \cup C) = (A B) \cap (A C)$ where $A = \{1, 2, 5\}, B = \{2, 4, 6\}, C = \{5, 7\}$. [3]

- × —